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1. Introduction 
Before we enter the problem of the equilibrium of a boat, we shall give an elementary treatment of 
some of the main result of hydrostatics. If you are familiar with the laws of pressure in gasses and 
Archimedes law, you may skip this first sections until section 5. Section 2 and 4 are taken from the 
first volume of 
Ole Witt-Hansen: Elementary physics.  http://olewitthansen.dk/Physics/Pressure_EF1.pdf 

2. Pressure in liquids 
 
 
 
 
 
 
 
 
 
 
 
 
Pressure in liquids and gasses are defined in the same manner as pressure on a solid surface, as 
the force normal to the surface per unit area. 
 
In a certain depth of a liquid, the pressure is the same in all directions. Because, if we consider a 
small cube of liquid at rest, as depicted in the figure, so small that we may ignore its gravity.  
Then the forces on opposite sides will be equal, since otherwise the cube would move, and the 
pressure on adjacent sides must also be the same, since otherwise it would be deformed. 
 
Since the pressure is the same in all directions, we simply speak of the pressure in a certain depth. 
We shall then seek a formula for the pressure ph in the depth h of a liquid. 
We put the density to ρ, and the pressure at the surface of the liquid to p0 . 
 
We then consider a rectangular volume of liquid, where the upper side coincides with the surface 
of the liquid. The area of that side and of the bottom side is A, and the height (depth) of the 
rectangular volume is h.  
The volume of the box is then V = A∙h. We then apply the defining equation for pressure:  

  pAF
A

F
p N

N  . 

The force on the upper side is the atmospheric pressure times the area: F0 = p0A. 
The mass of the liquid in the box is: mv = ρ∙V = ρ∙A∙h 
The gravity of the liquid in the rectangular volume is thus: FT =mvg = ρ∙A∙h∙g. 
The normal force on the bottom side of the rectangular volume must be the force normal to that 
side, which is the force on the upper side plus the gravity of the liquid in the rectangular volume. 
 

FN = FT + F0  = ρ∙A∙h∙g + p0∙A 

Since
A

F
p N , we can find the pressure in the depth h by inserting FN and dividing with the area A. 
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(2.2)  ghpph  0  (Pressure in the depth h of a liquid) 

 
It is worth noticing that the pressure depends only on the depth, but not on the design of the 
container, nor on how much liquid, there is in the container. 
  
2.3 Example 

The two vessels, shown to the left, have the same ground surface, but 
different volumes. If they are filled with liquid to the same height, 
then according to the formula (2.2), the pressure at the two bottoms 
should be the same. Since the two bottom surfaces have the same area 
there should also be the same force on the bottom surface!  
But how can this be true if the gravity of the liquid in the other vessel 
is much larger? 
It can of course be investigated by placing the two vessels on a 
weight and the argument above could point towards that the weight 
would show the same, (which it of course not does!). 
 So what is wrong with the reasoning? The solution is of course that 
the weight does not measure the force on the bottom side but the 
resulting force of gravity. 

But for the vessel to the left, the forces from pressure also affects the vessel upwards, forces that must be subtracted 
from the forces acting from the pressure at the bottom. But it is still correct that the two vessels have the same pressure 
at the bottom.  

3. Units for pressure. Conversions for units 
The SI-unit for pressure is, (as already mentioned), Pascal (Pa) equal to (N/m2), but especially 
when gasses are concerned, there are several other units, which have their origins in how the 
atmospheric air pressure was measured earlier.  
 
3.1 Definition: By the pressure 1 atmosphere, we understand the pressure of a 760 mm high quick 
silver column. To make the conversion to the SI-unit, we apply the formula for the pressure in a 
liquid with density ρ in the depth h. 
  
 P(760 mm Hg) =  ρHggh =13.6 103 kg/m3 ∙ 9.82 m/s2 ∙ 0.760 m = 1.013 105 Pa  
 
(3.2) 1 atm = 760 mm Hg = 1.013 105 Pa 
 

 1 mm Hg = atm
760

1
 = 133.3 Pa 

 
(3.3) (Definition) 1 Bar = 1 b =105 Pa. 1 mb (1 milibar) = 102 Pa 
  
 1 at is the pressure exerted by 1 kg on 1 cm2. 
(3.4) 1 at  = 1 kp/cm2 = 9.80665 N/(10-4 m2 ) = 9.80665 104 Pa 
 
We can see that 1 atm, 1 Bar and 1 at are almost equal to each other, which do not make it easier. 
Earlier the air pressure was mostly given in mb, and even earlier in atm. 
Nowadays the air pressure is measured in hPa (hecto-Pascal), which is almost the same numerical 
number as mb, a unit the fishermen have used for decades, so they did not really have to make a 
conversion, listening to the weather forecast. The unit 1 at has mostly been used in engineering. 
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For the pressure in car tires is often used the unit psi  (pounds per square inch) (also in Europe 
outside the UK). 1 psi =6.895 103 Pa. Also in daily language pressure is stated as kg/m2. However, 
since this it not a physical unit for pressure, then presumably is meant kp/m2. 

 4. Archimedes law 
The figure shows a rectangular box immersed in a liquid 
having density ρ.  
The pressure on the top side and on the bottom side of the 
box can be determined from (2.2) ghpph  0 . 

The top side is located in the depth h1, and the bottom 
side in the depth h2. Thus we find the pressure on the two 
sides: 
 101 ghpp      and   202 ghpp    

 
The forces that act on the two sides may be found by 
multiplying with their common area. A: 
 

  F1 =p1A   and   F2 =p2A.  
 

The difference between the forces on the top and the bottom, is called the buoyancy and it is 
denoted Fup. We shall then calculate the magnitude of Fup. 
 
(4.2) Fup = F2 - F1 = (p0 + ρgh2)A - (p0 + ρgh1)A = ρg(h2 – h1)A 
 
The volume V of the box is the height times the ground surface. V = (h2 – h1)A.  
It can therefore hold mass of liquid mv = ρV. Then we can find an expression for the buoyancy: 
 
(4.3) gmFgmgVAhhgF vupvup   )( 12       

 
This is Archimedes law: 
A body that is immersed in a liquid is affected by a buoyancy which is equal to the gravity of the 
displaced amount of water.. 
We have performed a rather detailed explanation of Archimedes law, but only for a rectangular 
box. However Archimedes law is valid for a body of any shape.  
If you (mathematically) confine a volume of liquid exactly the same as the shape of the immersed 
body, then the liquid is affected by gravity and the pressure from the surrounding liquid. Since it is 
at rest in the liquid the pressure forces from the liquid must exactly cancel the gravity of the liquid 
in the volume, which is equal to mvg. 
  
4.4 Exercises  
1.  a) Find the force that the atmosphere exerts on a 40 x 40 cm2 seat of a chair. 
     b)  Is it more or less than the gravity of an elephant? 
     c) Why does the chair not crash?  
 
2. What is pressure in bottom of the Pilipino graves, (depth 10.5 km)? State the result in atm. 
 

 



 Does the boat capsize 4 

8.3 Example. Rotating cylinder with liquid.  
The figure shows a cylinder with a liquid, which rotates with constant 
angular velocity ω around its axis of symmetry. The figure shows a 
vertical cut through the axis of the cylinder. We want to determine the 
equation y = f(x) for the intersecting curve in the cut with the surface. 
We consider a small particle of liquid at the surface. This particle is 

affected by gravity: gmFT


  and the reaction forces RF


 from the 

liquid particles around it. We assume that the liquid particles have no 

mutual movement, and RF


must therefore be directed perpendicular to 

the surface, since the liquid particle is at rest relative to the liquid. 

The sum of the forces gm


 and RF


must consequently be equal to the 

centripetal force on the particle. 
 

In the figure is marked the angle α so that f’(x)= α is the slope of the tangent. On the other hand as seen from the 
triangle: tan α = Fc/mg, from which follows. 
 

(8.3.1)  0
2

222

yx
g

yx
gmg

xm

mg

F

dx

dy c 


 

 
The intersecting curve is a parabola, and surface of the liquid is called a rotational paraboloid.   
We should notice that this curve is not what you see, when you stir in a glass of liquid, (even if they look alike), since 
the viscosity in the liquid plays a significant role. Here the velocity of the liquid particles will have a decreasing 
velocity until it becomes zero at the edge of the glass. 

5. Equilibrium and Buoyancy for a boat 
We now turn to the problem of equilibrium of a boat, where gravity is the only external force. 
The figure below represents a cross section normal to the longitudinal axis, which is chosen as the 
y-axis pointing out of the paper. The x-axis is chosen at the water-level, and the z-axis is the depth. 
We consider the hull being a cylindrical surface, parallel to the y-axis. G is the centre of mass of 
the boat, and C is the centre of mass of the displaced water, when the boat is upright. 
We define the buoyancy FB on the boat as the resulting force, coming from the pressure, acting on 
the part of the boat that is below the water. We will then show that the resultant of the pressure 
from the water passes through C, the centre of mass of the displaced water. 
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Let dA = dsdy be the surface element on the side of the boat, where ds is the line element of the 
cross section. The pressure p(z) in the depth z,  is p(z) =ρgz, where ρ is the density of the liquid 
(water) and g is the acceleration of gravity. The pressure p(z) acts along the normal to the surface 
element dA, and the pressure force is therefore ρgzdA, and its vertical component is  
ρgzdAcos(n, z), where n is the inward normal. Since dA cos(n, z) is numerically equal to the 
projection of dA on the horizontal, then ρgzdAcos(n, z) the vertical component of the force element 
can be written as ρgzdxdy. The buoyancy can be evaluated as: 
 

  boat

surface

B gVzdxdygF     

This equation expresses of course the law of Archimedes.  

The two vectors gravity GF


, and the buoyancy BF


have opposite direction, but otherwise they are 

equal to each other GB FF


 , since the boat is at rest. 

When the boat is at equilibrium (at rest), the centre of gravity G and the centre of mass of the 
displaced water C lie on the same vertical line. The condition FB = ρgV =FG= mg, determines the 
height of the waterline. We also note that the pressure acting on the two horizontal opposite area 
element, must balance each other, since the pressure is the same in the same depth, and the boat is 
at rest. 

6. When the boat rolls 
We shall now turn to the dynamics of the boat, if the equilibrium position is disturbed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We look therefore at a situation, where the boat heels, and oscillates from side to side along the  z -
axis.  
This can be done within the framework of hydrostatics, since the oscillations are so slow that it can 
be considered as a quasi static situation.  
We thus consider a rolling motion along a horizontal axis, the y-axis. The symmetry plane of the 
boat now subtends an angle θ with the vertical. During the roll, the shape of the displacements and 
the position of C will vary between C'  and C'', where C as before is the centre of mass of the 
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displaced water. C' is the position at the end of the roll and C'' is the corresponding opposite point 
of the roll. During the roll the centre of displacement describes a curve, having the midpoint C. 

In the figure above C' passes through the centre of buoyancy BF


.  

The force from gravity GF


 always passes through the centre of mass G.  

The two vectors GF


 and BF


 exerts, however, a moment of force GFH


   and we can see, that 

sinmghH   and is directed along the positive y-axis. 
In the figure the moment will then always tend to bring the boat back to equilibrium, excluding a 
capsize of the boat. 
However, if the buoyancy is to the left of the centre of mass, the moment will change direction an 
turn over the boat. If the shape of the boat is more or less like the one depicted in the figure this is 
hardly possible. Thus a boat built by sensible constructors will never capsize from rolling in sea 
waves. 
So the (theoretical) answer to the question: Can the boat capsize, submitted to sea waves. The 
answer is no, for traditional constructed boats.  
 
For moderate heeling, we may approximate sinmghH   by mghH   
If I denotes the moment of inertia of the boat along the y-axis, we can use the moment of force 
theorem  HI  , and in this case: 
 
   gmI boatboat   

 
But this is just the differential equation for a physical pendulum: 

   2  kI      where   
I

k
   

In the case of a boat gmk boat , so we get:   

 

   
boat

boat

I

gm
      or    

gm

I
T

boat

boat2  

 
Notice that the Period T is independent of the amplitude in the roll, as is the case of harmonic 
oscillations. 
 
Inserting numerical values are not really meaningful, but if we make some very crude 
assumptions, we may get some order of magnitude. We consider the boat as half a circular 
cylinder with radius r =10 m, and the length l = 100 m. 
The moment of inertia of a circular disc is 2

1 mr2 and the moment of inertia of half a cylinder with 

length l is therefore 4
1 mr2l. The masses cancel in the expression for T, so we find: 

 

   s
g

T 50
10010

2
2

4
1




   

 
To my experience, this is not so far from reality. 
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Reference: Arnold Sommerfeld: Mechanics of deformable bodies 


